题意:有$n$个城市,第$i$个城市的坐标为$(x_i,y_i)$,每个城市都有一个$k_i$,现在你要在某些城市建发电站,第$i$个城市建发电站的花费为$c_i$,你可以在城市之间建电线,两个城市之间电线的花费为$(k_i+k_j)*(\mid x_i-x_j\mid + \mid y_i-y_j\mid )$,现在要让所有的城市都有电,输出最小花费,并且求出哪些城市建了电站,哪些城市之间建电线。

思路:建立一个超级源点,当某一个城市建发电站时,则视为该城市到超级源点有一条权值为$c_i$的无向边,所以把每个城市到超级源点之间建立一条权值为$c_i$的无向边,再将每两个城市之间电线的花费算出来,在两个城市之间建无向边,跑一遍$kruskal$即可,在跑的过程中记录一下哪些城市建了电站,哪些城市之间建了电线,在进行$kruskal$时,应该是$n+1$个点(一个为超级源点)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <cstring>

using namespace std;

typedef long long ll;

const int N = 2010;
const int M = N * N;

struct node {
int u, v;
ll w;
};

ll x[N], y[N], c[N], k[N];
int n, fa[N], tot, cnt1, cnt2;
node edge[M];
int px[M], py[M], p[M];

void add_edge(int u, int v, ll w)
{
edge[tot].u = u;
edge[tot].v = v;
edge[tot++].w = w;
}

bool cmp(const node a, const node b)
{
return a.w < b.w;
}

int find(int x)
{
return -1 == fa[x] ? x : fa[x] = find(fa[x]);
}

ll Kruskal(int n)
{
memset(fa, -1, sizeof(fa));
sort(edge, edge + tot, cmp);
int cnt = 0; ll ans = 0;
for (int i = 0; i < tot; i++) {
int u = edge[i].u, v = edge[i].v;
ll w = edge[i].w;
int t1 = find(u), t2 = find(v);
if (t1 != t2) {
if (0 == u || 0 == v) p[++cnt1] = u + v;
else px[++cnt2] = u, py[cnt2] = v;
ans += w, fa[t1] = t2, cnt++;
}
if (cnt == n - 1) break;
}
if (cnt < n - 1) return -1;
else return ans;
}

int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%lld%lld", &x[i], &y[i]);
for (int i = 1; i <= n; i++) scanf("%lld", &c[i]);
for (int i = 1; i <= n; i++) scanf("%lld", &k[i]);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i != j) {
ll w = (k[i] + k[j]) * (abs(x[i] - x[j]) + abs(y[i] - y[j]));
add_edge(i, j, w);
}
}
}
for (int i = 1; i <= n; i++) {
add_edge(0, i, c[i]);
add_edge(i, 0, c[i]);
}
printf("%lld\n", Kruskal(n + 1));
printf("%d\n", cnt1);
for (int i = 1; i <= cnt1; i++) {
if (i == cnt1) printf("%d\n", p[i]);
else printf("%d ", p[i]);
}
printf("%d\n", cnt2);
for (int i = 1; i <= cnt2; i++) printf("%d %d\n", px[i], py[i]);
return 0;
}